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Our microscopic stochastic nonlinear Langevin equation theory of activated dynamics has been employed to
study the real-space van Hove function of dense hard sphere fluids and suspensions. At very short times, the
van Hove function is a narrow Gaussian. At sufficiently high volume fractions, such that the entropic barrier to
relaxation is greater than the thermal energy, its functional form evolves with time to include a rapidly
decaying component at small displacements and a long-range exponential tail. The “jump” or decay length
scale associated with the tail increases with time �or particle root-mean-square displacement� at fixed volume
fraction, and with volume fraction at the mean � relaxation time. The jump length at the � relaxation time is
predicted to be proportional to a measure of the decoupling of self-diffusion and structural relaxation. At long
times corresponding to mean displacements of order a particle diameter, the volume fraction dependence of the
decay length disappears. A good superposition of the exponential tail feature based on the jump length as a
scaling variable is predicted at high volume fractions. Overall, the theoretical results are in good accord with
recent simulations and experiments. The basic aspects of the theory are also compared with a classic jump
model and a dynamically facilitated continuous time random-walk model. Decoupling of the time scales of
different parts of the relaxation process predicted by the theory is qualitatively similar to facilitated dynamics
models based on the concept of persistence and exchange times if the elementary event is assumed to be
associated with transport on a length scale significantly smaller than the particle size.
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I. INTRODUCTION

The heterogeneous and non-Gaussian single-particle dy-
namics of glassy colloidal suspensions �1–11� and super-
cooled liquids �12–24� has recently been the subject of in-
tense experimental, theoretical, and simulation interest. A
host of dynamical fluctuation phenomena at the single-
particle level exist, which emerge even in the putative dy-
namical “precursor” regime probed in colloid experiments
and computer simulations where ideal mode-coupling theory
�MCT� �25,26� provides a good description of many
ensemble-average “mean” dynamical properties �1�. How-
ever, ideal MCT severely underpredicts dynamical fluctua-
tion effects such as the decoupling of diffusion and relax-
ation, large non-Gaussian parameters, and the non-Fickian
wave-vector dependence of the incoherent dynamic structure
factor relaxation times, and does not predict at all the emer-
gence of exponential tails in the real-space single-particle
van Hove function �1,18�. All these phenomena likely arise
from a crossover in transport mechanism to an intermittent
activated hopping dynamics �1,8�.

The focus of the present paper is the van Hove function
�27�, Gs�r , t�, which quantifies the distribution of single-
particle displacements, r, over the time interval t. An expo-
nential tail feature in Gs�r , t� has been observed in recent
computer simulations and experiments �1,4–24�. The key,
nearly universal, physics involves highly non-Gaussian jum-
plike motions on a microscopic length scale, which leads to a

bifurcation of mobility into fast and slow subpopulations
�14�. We note that jump motions in dense liquids have been
discussed in various contexts for over half a century �28–30�.
Some recent analyses of the problem are based on kinetically
constrained models �KCMs� �14,15,23,24�, which emphasize
dynamic heterogeneity and facilitation. The KCMs are con-
ceptually akin to specific forms of the continuous random-
walk model �CTRW� �31�, and involve multiple parameters
determined by fitting experimental or simulation data. In this
exercise, the definition of a discrete particle “hop” must be
postulated �14,15,32,33�.

Here we study the real-space van Hove function of dense
hard sphere fluids based on our microscopic stochastic non-
linear Langevin �NLE� theory of activated dynamics �34,35�.
Extensive quantitative confrontation of this approach with
computer simulation and colloid experiments for both aver-
age properties �8,34,36� and non-Gaussian dynamical fluc-
tuation phenomena �1,8,37� has provided evidence of its
physical soundness. In Sec. II, the basics of the theory are
summarized. Predictions for the van Hove function over a
wide range of volume fractions and time scales are presented
in Sec. III. The relationship of our approach to classic �30�
and recent �14,15,24� models for particle hopping is the topic
of Sec. IV. Section V discusses the issue of decoupling of the
time scales of different parts of the relaxation process, and
the possible relationship of our approach to the persistence
and exchange time concepts of KCM models �23,24,38�. The
paper concludes with a brief discussion in Sec. IV.

II. THEORETICAL BACKGROUND

Our theory has been heuristically motivated on physical
grounds �34�, and derived from time-dependent statistical
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mechanics �35�. It is built on a locally solid-state, or inho-
mogeneous fluid, picture of slow dynamics. The interparticle
force contribution to the single-particle stochastic nonlinear
Langevin equation is rendered tractable based on a dynamic
density-functional theory local equilibrium idea �39�. This
allows the instantaneous caging forces to be renormalized in
an effective potential manner based on knowledge of the
structure factor, S�k�. Dynamic closure is achieved by adopt-
ing an approximate relation between one- and two-particle
dynamics. The resultant nonlinear Langevin equation of mo-
tion for the instantaneous scalar particle displacement from
its initial position, r�t�, is given in the overdamped limit by
�34,35�

�s
�r�t�
�t

= −
�Feff�r�t��

�r�t�
+ �f�t� , �1�

where the random force satisfies ��f�0��f�t��=2kBT�s��t�,
and �s=kBT /Ds is the short time friction constant. For hard
sphere colloids �40�, �s=�0g��� is the dilute Stokes-Einstein
friction constant, � is the hard sphere diameter, and an es-
sentially exact expression �34� for the contact value of the
radial distribution function, g���, is employed. The effective
or nonequilibrium free energy is

�Feff�r� = − 3 ln�r� −� dk�

�2��3�C2�k�S�k��1 + S�k��−1

�exp�−
k2r2

6
�1 + S−1�k��	 
 �Fideal + �Fexcess,

�2�

where �=1 / �kBT� is the inverse thermal energy, C�k�
= �1−S�k�� /� is the Fourier-transformed direct correlation
function calculated using Percus-Yevick theory �41�, and � is
the number density. The nonequilibrium free energy is a
monotonically decreasing function of particle displacement
for 	
0.432, which defines the “normal” fluid regime. A
minimum in Feff�r� at the “localization length,” r=rL, first
emerges at 	c=0.432 �34�, which defines a simplified or “na-
ive” �42� mode-coupling theory �NMCT� nonergodicity tran-
sition. In our approach, this ideal glass transition signals the
onset of transient localization, emergence of an entropic bar-
rier of height FB, and a crossover to activated dynamics.
Examples of Feff�r� for the volume fractions presently stud-
ied are shown in Fig. 1. The barrier is �kBT at 	=0.5, and
grows to 6.7kBT at 	=0.57. In the spirit of transition state
theory, the “hopping distance,” defined as the difference be-
tween the location of the barrier and localization well, in-
creases monotonically with volume fraction. Throughout the
paper, all lengths are in units of the sphere diameter and all
times are in units of �0=�2 /D0.

Equations �1� and �2� are based on a solid-state-like pic-
ture of a dense fluid and cannot be valid at arbitrarily long
times or displacements. A dynamical crossover to an irre-
versible, linear, three-dimensional Langevin equation de-
scription is invoked by modifying Eq. �1� as �8,35�

−
�Feff

�r�t�
→ − �hop�	�

�r�

�t
. �3�

The hopping friction constant accounts for the mean fric-
tional resistance associated with the barrier crossing or cage
escape process. To quantitatively implement this idea, a “re-
action point,” r†, is a priori calculated to correspond to the
displacement at which the localizing cage force becomes
negligible. Various formulations of the reaction criterion all
yield �8� r†�0.5−0.6, and are indicated in Fig. 1. The reac-
tion point is substantially beyond the barrier at rB=0.3–0.4.
The transition in dynamical description is executed on a
single-trajectory basis, and trajectory propagation after the
reaction event is described by an ensemble-averaged friction
constant, �s→�s+�hop, where

1

�hop
=

1

N


i=1

N
1

�hop,i
. �4�

The trajectory friction constant �hop,i /kBT=6ti
† /r†2, where ti

†

is the time for the ith trajectory to pass the reaction point.
Calculations are performed for N=40 000 trajectories. The
“hopping diffusion constant” is Dhop=kBT /�hop and the long-
time diffusion constant is D=kBT / ��s+�hop�.

Numerical solutions of the NLE �8,37� have recently been
obtained for 0.4
	
0.57. The structural or � relaxation
time, �*, is defined as Fs�k* , t=�*�=e−1, where Fs is the in-
coherent dynamic structure factor and k* is the cage peak
wave vector of S�k�. Over the range 0.4
	
0.57, the �
time increases by three orders of magnitude. Many non-
Gaussian dynamical fluctuation effects are predicted, includ-
ing the following results most relevant to the present work.
�i� Significant decoupling of the volume fraction dependence
of the diffusion constant, D, and � time for 	�0.5. �ii� A
spatial scale dependence of the decoupling of diffusion and
relaxation characterized by a crossover length, 
D, that in-

FIG. 1. �Color online� Effective free energy in units of the ther-
mal energy as a function of particle displacement for volume frac-
tions 	=0.43, 0.465, 0.5, 0.53, and 0.55 �from top�. Circles mark
the reaction point �8�, which occurs at a displacement that decreases
with volume fraction.
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creases linearly with 	 and scales with the decoupling factor
as 
D��D�*. �iii� The dimensionless distribution function,
P�r , t�� �r /��3Gs�r , t�, broadens from Gaussian in the nor-
mal fluid regime to a bimodal form at intermediate times and
high volume fractions. These and other non-Gaussian dy-
namical fluctuation predictions compare favorably with col-
loid experiments and simulations �1,8�.

Our description of activated motion is based on a spatially
continuous “dynamical landscape,” not a discrete “hop.” The
barrier crossing and reaction events involve time scales that
are distributed reflecting their thermal noise-driven nature
�8�. The origin of decoupling is not a consequence of com-
puting different moments of a common static distribution
function. Moreover, “hopping events” are not irreversible
since barrier recrossings, important under high friction con-
ditions, are taken into account. However, a mean dynamical
“constraint release” idea enters via the reaction point con-
cept. This should be viewed as an approximate description of
the inevitable crossover to Fickian diffusion at long times
and distances. The idea that particle mobility grows with
increasing time and spatial displacement, a cornerstone of
coarse-grained facilitated or kinetically constrained models
�23,24,28�, is present at an elementary level.

III. NUMERICAL RESULTS

A. Van Hove function

The dimensionless displacement distribution function,
P�r , t�
4� ln�10�r3Gs�r , t�, is shown in two different plot-
ting formats in Fig. 2. The vertical axis is left as an arbitrary
scale since the numerical magnitude of P�r , t� is slightly af-
fected by the histogram bin size; moreover, an absolute scale
is not necessary for any of the issues we will address. Note
that if the dynamics were perfectly Gaussian, then the shape
and peak height of P�r , t� would be time-independent, while
the peak location would increase diffusively with time. For
	=0.55 �Fig. 2�a��, P�r , t� evolves from a single small-
displacement peak at short times to a bimodal form at inter-
mediate times and a single large-displacement Gaussian dis-
tribution at long times. The bimodality indicates mobility
bifurcation and is maximized for times of order the � relax-
ation time, a trend most apparent in the logarithmic represen-
tation. Figure 2�b� shows the displacement distributions for
several 	 at the � time. The bimodality becomes more pro-
nounced with increasing volume fraction. The qualitative
features of our displacement distributions agree with simula-
tions �8�. This representation of the van Hove function as
P�r , t� more clearly exposes the strong mobility bifurcation,
although, of course, the exponential tail feature of Gs�r , t�
carries the same information.

To expose the exponential tail feature in the traditional
manner, calculations of Gs�r , t� are given in Fig. 3 in a log-
linear representation. At very short times, the van Hove func-
tion is well described as a narrow Gaussian with no tail since
all particles are caged. At longer times, the van Hove func-
tion retains its rapidly decaying form at small displacements
but also develops a long-range exponential tail. The length
scale associated with the tail increases monotonically with
time �or root-mean-square particle displacement �MSD�� at

fixed volume fraction �Fig. 3�a��, and with volume fraction at
the 	-dependent � time �Fig. 3�b��. We note that even at the
longest times we have studied, Gs�r , t� is not precisely
Gaussian, as also found in experimental studies �33,34�. The
linear fits in Fig. 3 demonstrate that the exponential decay,
Gs�r , t��e−r/�, works well at intermediate times, and also at
“long” times as defined by a root MSD out to two particle
diameters. For these longest times, the van Hove function at
very large displacements �very small amplitudes of Gs�r , t��

(a)

(b)

t increasing

FIG. 2. �Color online� �a� Linear-linear plot of the displacement
distribution �with linear bins, arbitrary vertical scale� for 	=0.55, at
times corresponding to �from left� �r2�1/2=rB, t=�*, the analytic
Kramers time �34� t=�K, and �r2�1/2=2. Inset: linear-log displace-
ment distribution �with logarithmic bins� for the same system and
conditions as in the main panel as well as �r2�1/2=rL �leftmost
curve�. The arrow points in the direction of increasing time. �b�
Linear-linear plot of displacement distribution �with linear bins� at
the � relaxation time for 	=0.43, 0.465, 0.5, 0.53, and 0.55. Inset:
corresponding linear-log plots. The arrow points in the direction of
increasing volume fraction.
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exhibits a downward deviation from the exponential fit,
which indicates the onset of a crossover to Fickian behavior.
The characteristic length scale, �, is a function of both
elapsed time and volume fraction. It has traditionally been
referred to as a “jump length” to emphasize that its physical
origin is an activated hopping motion �28–30�.

The basic features of the theoretical results in Fig. 3 are in
qualitative accord with recent simulations �14� that find an
exponential tail at intermediate times down to Gs�r , t�
�10−8−10−7, roughly the same range as our calculations.
However, there are quantitative differences. The most appar-

ent is that the exponential tail typically emerges in simula-
tions when Gs�r , t��0.001−0.01, which is somewhat larger
than for our results. A more significant difference is that the
crossover from Gaussian to exponential form is smoother in
simulation, and the shoulder and curve crossings in Fig. 3 are
not evident. This likely reflects our oversimplified represen-
tation of the crossover from the NLE description to Fickian
diffusion.

Only a few experimental results for hard sphere colloids
at high volume fractions �3–6� and dense depletion gels
�33,34� have been reported. The emphasis has been on the
van Hove functions at an intermediate time scale correspond-
ing to the peak of the non-Gaussian parameter. This falls in
the late-�–early-� process crossover regime where particles
have moved only a small fraction of their diameter. We are
not aware of any data at the � relaxation time. Over the
Gs�r , t��10−5 range typically measured, exponential tails
emerge with characteristic decay lengths that are a fraction
of a particle diameter. The decay lengths do grow with time
and volume fraction. An exponential �Poisson� distribution
of jumping times was deduced for dense depletion gels
�33,34�, which is consistent with the NLE theory.

B. Jump length scale

We define an � relaxation time jump length, �*, as the
characteristic displacement of the fast trajectories that com-
pose the tail corresponding to Gs�r , t=�*��e−r/�*. Results are
shown in Fig. 4. The jump length increases nonlinearly with
volume fraction, from a roughly constant value of �0.05 for

(a)

(b)

FIG. 3. �Color online� �a� Log-linear plot of the van Hove func-
tion for 	=0.55 at times corresponding to �from left� �r2�1/2=rB, t
=�*, the analytic Kramers time t=�K, and �r2�1/2=2. Dashed lines
are exponential fits to the tails: Gs�r , t��e−r/�. Inset: log-linear plot
of the van Hove function for 	=0.43, at times corresponding to
�from left� �r2�1/2=0.19 �inflection point of Feff�r��, t=�*, t=�K, and
�r2�1/2=2. �b� Log-linear plot of van Hove distribution at the �
relaxation time for volume fractions �left to right� 	=0.43, 0.465,
0.5, 0.53, and 0.55. Dashed lines are exponential fits to tails:
Gs�r ,�*��e−r/�*.

FIG. 4. �Color online� Exponential decay length for the van
Hove distribution at the � relaxation time, �*, as a function of
volume fraction �points�. Linear fit to the diffusive dynamic length
scale �blue solid line�: �*�0.07
D+0.02; linear fit to the square
root of the decoupling factor �red dashed line�: �*�0.07�D�*�1/2.
Inset: log-log plot of the decay length as a function of time for
volume fractions �from left� 	=0.5, 0.53, 0.55, and 0.56 with
power-law fits �*� t�, �=0.6 �	=0.5�, 0.58 �	=0.53�, 0.50 �	
=0.55�, and 0.46 �	=0.56�.
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	�0.48 �FB
kBT� to roughly one-fourth of a particle diam-
eter at the highest volume fraction, 	=0.57. Since the expo-
nential tail characterizes the fast hopping subpopulation,
one might expect the growth of �* with 	 to be strongly
correlated with measures of the non-Gaussian behavior. Pre-
viously, we calculated �8� a length scale for recovery of
Fickian diffusion, 
D, from fitting our numerical results for
the wave-vector dependence of the decay time of the inco-
herent dynamic structure factor to the expression �−1�k�
�Dk2�1+k2�
D /2��2�−1. This form interpolates between dif-
fusive behavior at small wave vectors and a length-scale in-
dependent relaxation time at high wave vectors. Figure 4
shows that the � relaxation jump length �* is proportional to
the diffusive recovery length scale 
D, as well as to the
length scale for decoupling of relaxation and self-diffusion,
�D�*. Hence, the fast hopping particles that produce the ex-
ponential tail in Gs�r , t� are also responsible for the non-
Gaussian behavior in the incoherent dynamic structure fac-
tor, and multiple measures of non-Gaussian behavior have
the same physical origin in our theory. At the empirical MCT
temperature, binary Lennard-Jones mixture �BLJM� simula-
tions find the decay length at the mean � time is roughly
0.25� �14�. This is in remarkably good accord with the re-
sults in Fig. 4 since the empirical MCT volume fraction in
the theory �8,34� is 	�0.57–0.58.

A time dependence of the exponential decay parameter is
found in simulations and experiments �14,32�. Theoretical
results for ��t� for various volume fractions are shown in the
inset of Fig. 4. At intermediate and long �but before the
long-time Fickian crossover in Gs�r , t�� times, we empiri-
cally find an effective power-law growth, �� t�. The appar-
ent exponent � decreases from �0.6 to �0.45 with increas-
ing volume fraction. Within the context of our theory, this
time dependence is a consequence of the crossover to Fick-
ian diffusion as more mobile particles pass the reaction point
and increase the amplitude and range of the van Hove distri-
bution tail. The results can be well represented �not shown
�8�� as a linear relationship between the jump length and the
particle mean square displacement.

To further investigate the nature of the exponential decay
length scale at different times, Fig. 5 presents ��	� corre-
sponding to several characteristic displacements of physical
interest. The time scale of the non-Gaussian parameter
�NGP� peak corresponds closely to a mean square displace-
ment of r=R* where the cage restoring force of Feff�r� is
maximum �1,8�. At this time and displacement scale, �
�0.03–0.04 for all volume fractions studied. Confocal mi-
croscopy measurements on hard sphere suspensions at 	
=0.56 have been performed at the time scale of the peak of
the NGP �5,6�. Exponential tails of the van Hove function
were observed, and the characteristic decay length is very
close to our theoretical result. In contrast, at the � relaxation
time the theoretical decay length grows strongly with volume
fraction, such that �*�exp(33��	�), i.e., a logarithmic
growth of the jump length with the � time. In the logarithmic
representation, the bimodality of P�r , t� is qualitatively most
pronounced, with equally populated slow and fast peaks, at
times near the � relaxation time �inset of Fig. 2�. At the �
time, the fraction of “fast trajectories” is �60% for all vol-
ume fractions �8�.

The inset of Fig. 5 also shows ��	� at times correspond-
ing to two other characteristic root-mean-square displace-
ments: the barrier location rB, which is significantly smaller
than the reaction length, and twice the particle diameter. The
decay length at rB is �0.05–0.15, growing with volume
fraction. In contrast, at r=2 the decay length is essentially
constant. This indicates that for small �r=R*� and large �r
=2� root-mean-square displacements, where the system is
predominantly either caged or Fickian, the exponential decay
length scale is constant and the shape of the van Hove func-
tion does not depend on volume fraction. For intermediate
displacements �r=rB, and at t=�*�, where hopping dynamics
and mobility bifurcation are pronounced, the jump length
scale is strongly dependent on volume fraction, particularly
when there are substantial barriers.

It has recently been suggested �32� based on analysis of a
facilitated CTRW model that the time dependence of the ex-
ponential decay length of the van Hove function is likely
without deep physical meaning. In our theory, the magnitude
of � does depend weakly on the range of Gs�r , t� from which
it is extracted. However, within the range over which the
exponential fit is good, the deviations do not obscure the
qualitative results. In particular, the substantial growth of �
with volume fraction near the � relaxation time, and the
near-constant nature of ��	� at long times, are clear physical
trends. Reference �32� also argues that the time dependence
of � is due to the broad nature of the crossover to Fickian
diffusion, a conclusion that does seem to be consistent with
our results. In the short-time limit we find, and in the long-
time limit we expect, the distribution is best described by a
single Gaussian, and at intermediate times the small- and
large-r limits of Gs�r , t� are Gaussian-like. The crossover re-

FIG. 5. �Color online� Exponential decay length as a function of
volume fraction at times corresponding to �r2�1/2=R* �squares� and
t=�* �circles�, with fit to ��t=�*�=0.03 ln��*�+0.1. Inset: decay
length as a function of volume fraction at times corresponding to
�r2�1/2=R* �squares�, �r2�1/2=rB �diamonds�, t=�* �circles�, and
�r2�1/2=2 �triangles�.
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gion involves substantial populations of slow and fast par-
ticles, and the latter is manifest in the exponential tail feature
of Gs�r , t�.

C. Superposition

Experimental studies of dense depletion gels find a col-
lapse of the time and volume fraction dependences of the van
Hove function when normalized by the parameters of the
exponential tail �33�. This motivates us to attempt to collapse
our theoretical results using the exponential decay length as a
scaling variable. The main panel of Fig. 6 shows the results
for a high volume fraction of 	=0.55 at times corresponding
to root-mean-square displacements ranging from the barrier
location to 2�. Vertical shifts were applied to optimize the
collapse. For this high entropic barrier system, the exponen-
tial decay feature collapses well at the intermediate and long
times probed. Deviations occur at large displacements due to
the crossover to Fickian diffusion, and at small displace-
ments due to the dominance of the localized or immobile
population.

The inset of Fig. 6 attempts to collapse the van Hove
function at the � time, Gs�r ,�*�, over a range of volume
fractions for which the barrier varies from 0 to 6.7kBT. A
quite good collapse occurs for the volume fractions at which
activated dynamics is well developed, i.e., when the barrier
is �2kBT or larger �	�0.515�. The lack of collapse for the
lower volume fractions is not unexpected since these are in
the normal fluid or dynamical crossover regime.

IV. ANALYTIC JUMP MODELS AND LENGTH SCALES

Jump models have a long history in liquid state dynamics
�28–30,41�. There are multiple versions that may contain dif-

ferent physics. It is of interest to contrast our numerical NLE
theory results with two specific analytic jump models.

A. Torrey model

Motivated by the problem of NMR spin relaxation in liq-
uids, over 50 years ago Torrey developed a simple jump
model that appears to have escaped the attention of recent
discussions of exponential tails of the van Hove function
�30�. Torrey assumed that atoms exist in two states: �a�
bound in a deep potential well �trap� with vibrational motion
neglected, or �b� in a thermally excited state where the par-
ticle undergoes Fickian diffusion with a constant D. Motion
consists of a sequence of random trapping and diffusion
events described by Poisson statistics with a single mean
time between events, �. The van Hove function involves a
sum over all possible numbers of events, n, during a time
interval t weighted by the appropriate probabilities,

Gs�r,t� = 

n=0

�

Pn�r�
1

n!
� t

�
�n

e−t/�, �5�

Pn�r� =� dk�

�2��3eik�·r�� 1

1 + k2D�
�n

. �6�

A single jump process has a simple exponential form

P1�r,t� = �
0

� dt

�
e−t/� e−r2/4Dt

�4�Dt�3/2 =
e−r/


4�
2r
, �7�

with a characteristic length scale


 = �D� . �8�

This jump length is time-independent and proportional to a
quantity that describes decoupling of diffusion and “relax-
ation.” It is not determined by either the Torrey or CTRW
models, in contrast to our theory �8�.

Since the idealization of a discrete jump does not enter
our approach, the proper connection with the Torrey model is
likely at the level of Eqs. �5� and �6�, which correspond to

Fs�k,t� = e−k2Dt/�1+k2
2� 
 e−t/��k�. �9�

Indeed, we have shown previously that the form of Eq. �9�
does accurately reproduce the full NLE predictions for the
incoherent dynamic structure factor �8�. It follows that the
basic physical picture underlying our approach is similar to
the Torrey trapping and retrapping scenario. In analogy with
the physical meaning of Enskog or independent binary col-
lision theory �40,41�, our approach should not be thought of
as describing just one hopping event, but rather sequences of
spatially uncorrelated cage escape events. The latter do have
a nontrivial spatial character since non-Gaussian dynamics
and a characteristic Fickian crossover length are predicted
�8�.

Equations �5� and �6� can be simplified further by rewrit-
ing them as

FIG. 6. �Color online� Collapsed van Hove function, normalized
on the y axis by a floating parameter and on the x axis by the decay
length �, for 	=0.55 at times corresponding to �from right�
�r2�1/2=rB, t=�*, Kramers time t=�K, and �r2�1/2=2. Inset: col-
lapsed van Hove function at the � relaxation time for �from bottom�
	=0.43, 0.5, 0.53, 0.55, and 0.57.
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Gs�r,t� = ��r��e−t̃ +
e−t̃

2�2�
0

�

dK K sin�kr̃��exp� t̃

1 + K2� − 1	 ,

�10�

where t̃
 t /�, r̃
r /
, and K
k
. If t̃
1 and r̃
1, corre-
sponding to the intermediate time non-Fickian regime where
the exponential tail feature is prominent and 	-dependent,
the exponential factor in the integrand can be expanded and
the series is convergent, thereby yielding

Gs�r,t� � ��r��e−t̃ +
t̃e−t̃

4�
̃3

e−r̃

r̃
. �11�

An exponential tail is predicted with amplitude that grows
with time, and then eventually vanishes as the dynamics
crosses over to Gaussian.

B. General Mori-Zwanzig analysis

We have recently employed Mori-Zwanzig projection op-
erator methods to derive a general expression for the inco-
herent dynamic structure factor in the long-time Markovian
limit where Fs�k , t�→e−t/��k�. The goal was to predict the
length scale for the onset of Fickian diffusion. The formally
exact expression for the wave-vector-dependent relaxation
time is �36�

��k� = k−2�2�
0

�

dt�

j

eik�zj−zj�t��f j
zf j

z�t�� , �12�

where zj�t� is the z component of the displacement of particle
j at time t, and f j

z�t� is the corresponding force. We adopted a
“small” wave-vector expansion thereby yielding

1

��k�
=

k2D

1 + �k
D�2 , �13�

where 
D is a “diffusive” or “viscoelastic” correlation length
beyond which Fickian diffusion occurs, and D is the self-
diffusion constant. Equation �13� is identical in form to Eq.
�9� with


D
2 = �−1�D�L

s � 3�−1�D�s
s, �14�

where �L
s is the single molecule longitudinal viscosity, which

is proportional to �*. In principle, the latter is not the same as
the true �collective� viscosity, but one expects they are very
similar if activated dynamics is dominant �36�. Hence, Eq.
�14� corresponds to 
D��D�*, which is consistent with the
numerical NLE theory results and qualitatively the same as
the Torrey model.

V. DECOUPLING AND COMPARISON WITH CTRW
MODELS AND SIMULATION

A. Continuous-time random walk and kinetically
constrained models

The CTRW �31� and KCM �14,23,24,38� types of stochas-
tic models are based on physically motivated, but empirically
postulated, dynamical rules. A discrete picture of instanta-

neous local transport events separated by periods of localiza-
tion is employed. The simplest way to build in the dynamic
facilitation concept of space-dependent mobility is to assume
that the first jump occurs more slowly than subsequent
jumps. Hence, two distinct mean hopping times, ��p� and
��x�, with ��x�� ��p�, are introduced. The former is the
slower “persistence time” for localization prior to the first
hopping event, and the latter is the more rapid “exchange”
time between events, which vary differently with tempera-
ture or density �23,24�. Recent analyses of simulations have
defined these time scales in terms of single-particle trajecto-
ries �15�. A localization length, rL, is introduced in the mod-
els to account for harmonic vibrations in the trapped state,
and jump lengths are characterized by a Gaussian distribu-
tion with a width parameter rJ. The idea is that the first hop
mimics structural relaxation and controls properties such as
viscosity, but self-diffusion requires multiple jumps and is
largely determined by the faster subsequent hopping events.
This physical picture has been proposed as the origin of de-
coupling in glassy liquids �14,24�. In its minimalist version,
the model has four adjustable parameters, which are not a
priori related to molecular structure or forces.

In our notation, the above CTRW facilitation model �14�
corresponds mathematically to

Fs�k,t� = e−k2rL
2/6e−t/��p� +

f�k�
�f�k� − 1

�e−t/��p� − e−�1−f�k��t/��x�� ,

�15�

f�k� 
 e−k2rL
2/6e−k2rJ

2/6, � 
 ��p�/��x� . �16�

In real space, the leading term in Eq. �15� represents “immo-
bile” particles waiting for the first jump, while the second
term describes particles that have hopped one or more times
and is analytically well represented as an exponential tail
with decay length � in the van Hove function �with logarith-
mic correction� for intermediate times and distances �14�. To
use this model to interpret atomistic simulations, a “jump” or
“event” must be �arbitrarily� defined as a particle displace-
ment of some assumed value. Applications to the BLJM
models �14,15� employ �small� displacements of order one-
half a particle diameter or less. In applications to colloid gel
experiments �32�, a jump event is assumed to correspond to
an extremely small distance, less than one-tenth a particle
diameter. The latter is the spatial range of the polymer me-
diated depletion attraction, and is similar to the length scale
associated with the maximum cage restoring force of the
nonequilibrium free energy of our NLE theory for hard
spheres. Defined in this manner, the deduced persistence and
exchange times decouple at low temperatures in the BLJM
model �14,15�, and at high degrees of depletion attraction or
volume fraction in colloidal gel-like suspensions �32�. De-
coupling is quantified by the parameter � in Eq. �16�, which
is unity in the normal fluid regime, and grows monotonically
with cooling or concentration in the glassy regime �14,15�.
For the standard BLJM model, ��4 at the empirical MCT
temperature �14�. As the dynamics becomes highly intermit-
tent, the persistence time grows faster and is more broadly
distributed than the exchange time �15,24�.
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It is not possible to unambiguously compare our theory
with discrete jump models since in our approach particles
undergo continuous displacements on an effective free-
energy landscape that has multiple dynamically relevant en-
ergy and length scales. However, we have identified a plau-
sible approach for semiquantitative comparison that is
motivated by the recent KCM analysis of an atomistic simu-
lation in Ref. �15�. These workers defined the persistence
time as the average time associated with a particle’s first
displacement of a distance equal to its radius. The exchange
time is the average time to displace an additional particle
radius. We analyze our results based on this perspective.

B. Decoupling in the NLE theory and comparison
with CTRW models

In the NLE theory, the mean reaction time, ��rxn�, is the
average time for trajectories to surmount the barrier and first
attain the reaction displacement r†�0.5–0.6. We have
shown this time is nearly identical �8� to the structural relax-
ation time defined by Fs�k* , t=�*�=e−1. Thus ��rxn� is the
analog of a persistence time, and we identify ��p�
��rxn�.
We have also studied a mean diffusion time, ��diff�, for par-
ticles to displace to r=1, comprising both the dynamics on
the effective free energy landscape and a period of renormal-
ized three-dimensional Fickian diffusion �8�. We adopt as a
simple estimate of an exchange time ��x�
��diff�− ��rxn�.

Figure 7 shows our calculations of the ratio �

��p� / ��x� reduced by its value at the lowest volume frac-
tion studied, 	=0.4 �no barrier, normal fluid regime�. In the
absence of an entropic barrier, this measure of decoupling
shows no volume fraction dependence. However, the ratio

grows as the barrier exceeds �kT, and at 	=0.57 reaches
��4. We note that 	�0.57–0.58 is the empirically deter-
mined ideal MCT transition of our theory �8,34�. Hence, the
predicted magnitude of decoupling is in remarkable agree-
ment with its analog extracted from a recent simulation of
the classic BLJM at the empirical TMCT �14�. Moreover, the
shape of the decoupling curve in Fig. 7 is quite similar to that
found for several BLJM simulations �14–17,21� if one makes
the natural correspondence TMCT /T↔	 /	MCT. Figure 7 also
demonstrates that ��p� / ��x� is numerically very similar to our
prior results �8� for the diffusive dynamic length scale, 
D, as
extracted from the wave-vector dependence of the incoherent
dynamic structure factor relaxation time, and also the decou-
pling factor, �D�*. Moreover, we find ��p� / ��x� is roughly
proportional to the � time exponential decay length, �*.

To interpret the significance of these results, we summa-
rize the physics underlying decoupling in our theory �1,8�.
There are three key points.

�i� Decoupling does not arise from the naive idea that
diffusion and relaxation are simply different temporal mo-
ments of a Poisson hopping time distribution. Rather, it is
largely our “dynamic constraint release” idea that particle
trajectories of highly varying mobilities become diffusive,
governed by a common mean hopping friction constant, be-
yond a common reaction displacement associated with a dis-
tributed �reaction� time scale. The hopping friction follows
from averaging over all trajectories before the reaction point.
Hence, one might view the analog of the mean exchange
time as a subtle reaveraging of trajectories in a manner dis-
tinct from determination of the persistence ���*� time. The
concept of highly local, irreversible activated hopping mo-
tions on the subparticle diameter length scale as the basic
mechanism of the � relaxation process has recently acquired
direct experimental support based on confocal microscopy
observations for very high volume fraction colloid glasses
�43�.

�ii� The decoupling of our ��p� and ��x� is related to the
different volume fraction dependences of the reaction and
diffusion times, i.e., differences in mobility on different
length scales. Distributions of the reaction and diffusion
times are shown in Fig. 8. At the smallest volume fraction,
the two distributions have very similar, log-normal shapes.
With increasing volume fraction, the reaction time distribu-
tion develops a fast hopping tail and transforms to a nearly
Poisson form. In contrast, the diffusion time distribution re-
tains its log-normal shape. Although both mean times be-
come substantially longer, the increase in the reaction time is
greater.

�iii� The particle mean square displacements are shown in
the inset of Fig. 7. Transport on the reaction and smaller
length scales is not Fickian, and the “hopping” rate �local
slope of MSD� is predicted to be a continuous and nonmono-
tonic function of particle displacement �1,8�, the details of
which are in good agreement with colloidal experiments
�37�. Hence, a slower “first jump” is a natural consequence
of the need to surmount a barrier located at rB�0.3–0.4. The
second “jump,” following the crossover to a linear Langevin
description, occurs on a flat effective free energy surface
with a renormalized �smaller� diffusion constant. Thus, it is
not surprising that ��p� has a stronger volume fraction depen-
dence than ��x�.

FIG. 7. �Color online� Ratio of the persistence and exchange
time �circles� as defined in the text, normalized by the value at 	
=0.40, plotted as a function of volume fraction. Dashed lines are
normalized �D�*�1/2 �squares�, 
D �up triangles�, and 16�* �down
triangles�. Inset: mean square displacement for �from left� 	=0.43,
0.465, 0.5, 0.53, and 0.55; circles mark the reaction point.
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We cannot definitely state how our physical picture con-
nects to dynamic facilitation concepts and KCMs. However,
a key common idea is that mobility is a function of particle
displacement �8,23,36,38,44�. A practical limitation to draw-
ing more precise conclusions is that the KCMs are a coarse
grained, discrete jump description of a continuum fluid,
which is only just beginning to be applied on the subparticle
size length scale. In our opinion, liquid structure and molecu-
lar details cannot be irrelevant on such length scales.

VI. CONCLUSION

We have analyzed the numerical predictions of the sto-
chastic nonlinear Langevin theory of activated dynamics for
the real-space van Hove function in hard sphere fluids and
suspensions. Detailed summaries of our results, and compari-
son with other theories, simulations, and experiments, have
been given in prior sections. Overall, we believe the theory
provides a good account of the exponential tail feature of the

van Hove function, in terms of both the absolute magnitude
of the decay length and its dependence on volume fraction.
The primary origin of inaccuracies in the theory is likely the
adoption of an abrupt crossover from motion on a dynamical
free energy landscape to three-dimensional Fickian diffusion.
Space-time correlated activated hopping dynamics on length
scales well beyond the particle size, and the possible distrib-
uted nature of local caging constraints �e.g., spatial environ-
ment fluctuations of Feff�r��, are not presently included in the
NLE theory. Whether such effects are essential for under-
standing the existing colloidal experiments and computer
simulations that probe only a glassy dynamical precursor re-
gime is not at all obvious to us. In our opinion, there is no
compelling evidence that the answer is in the affirmative for
single-particle dynamics.

We suggest that the recent analyses of simulations and
confocal experiments based on facilitated and discrete
CTRW models should be more thoroughly explored in order
to establish the robustness of the deduced conclusions to
varying the arbitrary definition of a particle “jump.” This
suggestion is also applicable to the analysis of our
continuous-space NLE theory in the discrete framework of
“exchange” and “persistence” events. We also suggest that
many new confocal microscopy experiments �simulations�
be performed on model hard sphere colloidal suspensions
�fluids� to systematically test our prior �1,8� and present pre-
dictions as a function of time, displacement, and volume
fraction. The issue of how to define an event or jump seems
even more problematic for depletion particle gels in which
slow dynamics is controlled by very short-range attractions.
The application of our NLE theory to explore the non-
Gaussian fluctuation dynamics and real-space van Hove
function of such systems is of great interest, especially given
the emerging experimental capability to probe single-particle
dynamics using confocal microscopy. Efforts are underway
in this direction.
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